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Abstract 

We constructed a model to describe pulse propagation and frequency conversion in fiber 
Bragg gratings. This research was conducted in cooperation with members of the Pho- 
tonics Center, where measurements will be made on the pulses. The PI and his group 
examined the theoretical issues connected with pulse propagation in fibers with fiber 
Bragg gratings as dispersive elements. The elements can also be designed for use as linear 
or nonlinear optoelectronic devices. The project included computational and analyti- 
cal calculations on the amplitude equations, derived by a multiple-scales technique, and 
the results ere tested against exact numerical computations. The computational effort 
was performed on the Numerical Intensive Computers, mainly RS6000 workstations, at 
Rensselaer Polytechnic Institute. 

The multiple-scales perturbation theory is used to derive a set of coupled-mode equa- 
tions valid for electromagnetic wave propagation in a weakly periodic, nonlinear medium 
with periodicity on the order of a wavelength. We apply this to a problem where the 
medium has a x(2) response and find that the second-harmonic signal generated is en- 
hanced when the fundamental is tuned near the band edge. Results are given for a 
possible experiment with optical fibers. 

The research further developed a working relationship with members of the Photonics 
Center in Rome, NY with joint publications. For this project to be successful, I kept in 
close communications with the experimental effort by frequent visits. 
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Summary of Accomplishments 

Under the grant, the following tasks were accomplished: 

1. An analytical description of fiber grating using the multiple scales method was devel- 
oped. This method allows accurate modeling of fiber Bragg gratings and can be used to 
examine pulse propagation in the devices. 

2. Numerical calculations of Bragg gratings have been made using a numerical transfer 
matrix method and an analytical Bloch-Floquet function analysis; comparison between 
the two results reveals that the amplitude equations give numerically identical results 
over the parameter range of physical interest. The group velocity and effective nonlinear 
response have been analyzed by this method. 

3. Regular trips to the Photonics Center were made during to discuss research progress 
and learn about problems that could benefit from mutual collaboration. Several items 
of interest were using a modelocked fiber laser being setup by Walter Kaechele with a 
cross-correlator to study pulse propagation in the 1.5 ^m wavelength regime through 
fiber Bragg gratings. 

4. A multiple scales analysis of fiber Bragg gratings with optical nonlinearities were an- 
alyzed. The fiber medium can develop strong second-harmonic radiation and we predict 
that the conversion efficiency can be improved by an order of magnitude. Realistic calcu- 
lations to study the phenomenon were made and comparison between the numerical and 
exact results, when possible, gave excellent agreement. The detailed numerical evaluation 
of the results show that the concept of resonant enhancement has great promise. A paper 
on these results was accepted for publication. 

5. Travel to the Photonics Laboratory to discuss future experiments and develop further 
results continued on a regular basis. Trips were made to AFOSR workshop in Tucson, AR 
on October 9-12, 1996 and to the annual Optical Society of America meeting in Rochester, 
NY October 20-25, 1996. Results were presented on the research progress and informal 
discussions with leading scientists generated interest in our work. 

6. The PI received a photonic crystal sample from Mark Bloemer, who is at the U.S. 
Army Missile Command. Walter Kaechele at Photonics Center planned experiments on 
the sample to examine the group velocity changes at the band edge and related linear 
and nonlinear properties of the device. We were interested in determining the feasibility 
of the photonic device for true time delay in RF photonics. 

IV 



1      Introduction 

Wave propagation in periodic dielectric materials is useful for developing a number of 
photonic devices [1], such as distributed feedback lasers [2] and Bragg grating niters [3]. 
The transmission is characterized by large dispersion of the pulse and the appearance of 
stop bands when the Bragg conditions are met. Recently, especially large group velocity 
delays have been reported at the edge of the stop band, where the transmission is near 
unity and at the same time, the pulse experiences no appreciable change in its shape[4]. 

This report is devoted to an analysis of second-harmonic frequency conversion in 
weakly periodic media with material periodicity chosen to be on the order of the fun- 
damental harmonic wavelength. The results are accepted as a publication in the Physical 
review A. The tools of our analysis are multiple-scales perturbation theory[5] and we carry 
out the calculations to demonstrate the potential for using a band edge resonance in Bragg 
gratings. A separate paper deals with the numerical computations for deep gratings[6], 
but the qualitative understanding gleaned from the present analysis carries over to the 
analysis of deep gratings. Phase matching multi-wave interactions by periodic structures 
was perhaps first discussed some time ago by Armstrong et al.[7] and by Bloembergen 
and Sievers[8]. 

Three types of phase matching were proposed by Armstrong et al.[7] for efficient har- 
monic generation. Among them, it was proposed to periodically replace the nonlinear 
medium by its inversion image every coherence length, which is proportional to the re- 
ciprocal of the phase mismatch wavenumber. This is called quasi-phase matching; the 
nonlinear susceptibility changes sign, but the linear properties of the medium are the 
same. Generally, the coherence length is orders of magnitude longer than the funda- 
mental wavelength. Theoretically, quasi-phase matching preceeded birefringent phase 
matching, but it was not experimentally feasible until recently, when periodic poling of 
the domains in a ferro-electric crystal was developed[9]. Other concepts similar to phase 
matching were also proposed[10]. For quasi-phase matching to be efficient, the length 
scale of the material periodicity is on the order of the coherence length; for this length 
scale periodically varying the nonlinear coefficient is important. 

However, there are some signaling problems where the material periodicity is on the 
order of a wavelength. Here the linear properties of the medium become important and 
can be used to reduce the phase mismatch arising from nonlinear wave mixing. In this 
regime, because of the chosen periodicity, only the spatial D.C. component of the (possi- 
bly) periodically varying nonlinear coefficient is required. We dub this band-edge phase 
matching; it is distinct from other forms of phase matching, such as using a defect mode 
in the periodic structure[ll, 12]. Band edge phase matching is so chosen because the 
fundamental wavelength is near the band edge of the first stop band in the structure 
and forward-backward wave coupling is resonant. Band edge phase matching can be con- 
sidered the converse of quasi-phase matching in terms of which medium properties are 
homogeneous or periodic. In quasi-phase matching the linear medium appears homoge- 
neous and the nonlinear medium is periodic with the period chosen to be of the order of 



the coherence length. However, in band edge phase matching the linear medium is peri- 
odic and the nonlinear medium appears homogeneous with the periodicity on the order 
of a wavelength. 

As an application of a second-harmonic medium for the processes discussed in this 
paper, we propose the use of silica glass fibers. Despite the disorder in glass, second- 
harmonic generation was observed, first in fibers[13, 14], then in bulk glasses[15], as well. 
Conversion efficiency approaches several percent. 

A fiber Bragg grating is an example of a weakly periodic medium. They have a number 
of applications; filters, taps and wavelength division multiplexers are a few examples, but 
others have been demonstrated, such as, laser wavelength control, mode conversion in 
fibers and distributed Bragg reflectors [3], Furthermore, chirped fiber Bragg gratings have 
been used to compress pulses broadened by self-phase modulation. For instance, pulses 
have been compressed from 2 ps duration to less than 200 fs duration[16]. 

Nonlinear optical mixing effects in fibers can incorporate Bragg gratings to improve 
the optical conversion of radiation. The design features require good overlap of the optical 
energy in the fiber grating; advantages are: a reduced, grating-dependent group velocity to 
increase the interaction time of the waves in the grating, matching of the phase velocities, 
and band edge resonance to increase the mode amplitude in the structure. The design of 
periodic structures will lead to higher conversion efficiency, more compact structures, and 
lower input power requirements. Enhancement of conversion efficiency in deep gratings 
has been numerically examined[6], but so far no complete analysis of the problem has 
been made, nor has the problem been examined in fibers. This paper is intended to place 
the previous findings on a firm mathematical footing; in this we are partially successful 
by analyzing the case of weakly periodic gratings with periodicity on the order of a 
wavelength. 

In applying multiple scales to the time-dependent pulse problem, we assume the 
medium to have chromatic dispersion even at the lowest perturbative order. This is 
slightly different from the usual Kronig-Penney model, where chromatic dispersion is 
neglected[l]. Time-dependent secularity conditions are different for chromatic dispersive 
and non-dispersive problems and must be handled separately. However, for the time- 
independent CW problem, multiple scales can handle both the chromatic dispersive and 
non-dispersive cases at once, because secularity conditions reduce to those of spatial har- 
monic Fourier terms, provided the physical problem can be reduced to a finite set of 
spatial oscillators. We derive evolution equations for the chromatic dispersion case; and 
for the continuous wave problem, we derive results with chromatic dispersion and then 
show how the parameters reduce to the dispersionless case to illustrate what is obtained in 
Kronig-Penney-type models. Note that for band edge phase matching to occur, chromatic 
dispersion is required in order to offset the Bragg grating dispersion. 



2    Coupled-mode Equations 

We consider a wave incident upon a nonlinear medium. The medium has a periodic 
modulation of the dielectric constant; for the one-dimensional case the form of Maxwell's 
equation is 

d2E      1 d2DL _ 4TT d2PNL 

dz2      c2  dt2   " c2    dt2   ' (1) 

DL is the linear displacement field, which is related to the electric field by the following 
constitutive relation 

DL(z,t)= f   e(z,t-t')E(z,t')dt'. (2) 

The function e(z, t) is the dielectric function; it is periodic in z and the medium is dis- 
persive. PNL is the nonlinear polarization contribution, which for our present case is a 
second-order nonlinearity: 

pNL = Ax(2)£2 (3) 

Here A is a parameter that multiplies a perturbative contribution; there are five small 
parameters in our analysis and this parameter serves as a bookkeeping device. In this 
context A is a dimensionless parameter that will be set to one after the perturbation 
analysis is carried out; it serves to identify all the contributions of a given perturbative 
order. 

The coefficient x^ governs three-wave mixing processes, e.g. sum- and difference- 
frequency and second-harmonic generation. The analysis given hereafter can also be 
applied to a number of three-wave mixing processes, but we restrict our attention to 
second-harmonic generation. The analysis can also be extended to include four-wave 
mixing by introducing a third-order susceptibility. 

Before deriving the coupled-mode equations, Eq. (2) is rewritten by introducing the 
Fourier transform relation 

e(z,t) = je(z,u)e-iwtdu. (4) 

The function e(z,to) is complex and its real and imaginary parts are denoted by the 
subscripts r and i, resp. By using the Taylor series expansion of e(z,u), Eq. (2) can be 
expressed in a local form 

DL(z,t) = e(z,i-)E(z,t). (5) 

This expression is well suited to the multiple-scales analysis given below. The real part 
of the dielectric function is of order unity, but the imaginary part is considered to be 
weak,i.e. e(u;) = tr{u) + iAe,(w). The function e is a periodic function in z. For a weakly 
periodic medium we assume the form 

e(z, u) = e(u) + A2Ae(a;) cos(27rz/d). (6) 

Here d is the period of the dielectric variation and Ae(w) is the amplitude of the spatially 
periodic component. 



2.1    Multiple-scales Analysis 

In the multiple-scales analysis[5] the space and time coordinates are expanded in a power 
series of a small parameter, that we denote as A; tn = Xnt0 and zn = \U

ZQ. In the past this 
method has been applied to x^ materials without periodic changes by two of the authors 
[17]; the procedure parallels that development. The spatial and temporal derivatives are 

— = JL    A—+ 
dt     dt0       dh 

<L = JL     \ A 
dz     dz0       dzi 

Similarly, the electric field is also expanded in powers of the perturbation parameter 

E = E0 + \Ei + ... (8) 

Orders of the perturbation parameter A are gathered together. Besides the spatial 
variations of the dielectric function, the nonlinearity and absorption are also considered 
to be weak, as noted above by the parameter A. The expansion of the real part of the 
dielectric function to first order is 

A ,.d,      A .. d .     ,,#/. d N. d ,_* 
''('di^^'wJ + ^Wo^ml- (9) 

The prime denotes a derivative with respect to the argument of the function, i.e. fre- 
quency. The 0(1) term in the expansion is 

XA-(5j4SM<s;))A-0- (10) 

The solution, when a plane wave is incident at z = 0 with a frequency u> and 2u> is 
expressed as 

p       _     Afi(Zi,ti) j(klZo_uto)        Abi(zUti)   i(-kizo-uto)   , 

°    ~ y/h       G +        ^ + 

Af2JZl,tl) ci(k2Zo-2wtQ) + Ab2(Zl,U) c,(_fc2Z0-2u;f0) + Q Q ^ 

y/h/2 Jh/2 

where the wave numbers (ki,k2) are obtained from the chromatic dispersion properties 
of the medium, so that k% = cj2er(a;)/c2 and k\ = (2w)2er(2a;)/c2. In our analysis the 
phase mismatch is also treated as small, i.e. AAfc = (&2 — 2&i). Note that AAfczo = 
Afczi. Hence the traditional three-wave process is obtained where quadratic nonlinearities 
dominate. We avoid large phase mismatch because that would lead to an asymptotic 
regime beyond three-wave mixing (or cascading) [17]. The field amplitudes depend on 
the slower parameters (z\,t\) and the rapid variations of the field appear as a plane-wave 



solution of the wave equation. The amplitudes of the fundamental waves (Afi, AM) and 
the second-harmonic waves (^4/2, ^62) are treated as order unity functions, which multiply 
the plane-wave solutions. 

To first order in A the equations of motion are 

LoEi  = -A^rMi^r)Eo)-2 
1 ( d2 ..,._£_ 

 . (.d_,p \ , l_^r_9_v9Eo 
c* dhdto^dto'  °) + c2 dtleAldt/ dtx 

2cos(2irz0/d) d2 Ai ,. d ^   , 4TTX
(2)
 d2 _3 

'      *      dti^wJE° + -^MEl (12) 

The chromatic dispersive secular terms are eliminated from the right hand side of Eq. (12), 
as shown in Refs. [5, 17]. We also choose the grating periodicity, d, so that it is close to 
one-half of the fundamental harmonic wavelength. The deviation from this condition is 
denoted by 2XS =2j — 2k\ and from that we observe 2A£z0 = 28z\. At the fundamental 
frequency, forward-backward waves are coupled because of the choice of grating periodicity 
d. The equations of motion for the fundamental frequency envelope functions are given 
by 

azi      Vgi ati d 2 d d J 

_dA»+2_d^ = _^       ,       ,2fal+,.^wl.   ,it„.    (13) 
ozi      Vgi ati d 2 d d 

The group velocity at the fundamental frequency is vgi = duj/dki; at this perturbation 
level, the group velocity on the left hand side is that of the homogeneous medium. The 
normalized absorption coefficient is ai = ^j^ye,(wo) and the normalized grating strength 

coefficient is n = --zr^. The scaled nonlinear coefficient is N = r ""_ *?  . ■ 
IT 2kl C2 ' IT Jfcj c2 

The second-harmonic equations are given by 

0^11 4. 1_^J1    -    -ISIA» + i-NA2 e-iAk*i- 
azi      vg2 oti d 2 d      J 

dAb2 ,   1 dA\a 
+ -^   =   -^An + i-.NAlie^; (14) 

ozi      vg2 oti d 2 d 

where the group velocity at the second-harmonic is vg2 = d(2uj)/dk2, where again this is 
the group velocity of the homogeneous medium, and the normalized absorption coefficient 
is 0:2 = f }^e,-(2u;o). The forward- and backward-waves at the second-harmonic are not 
coupled in the weak-grating limit, unless a second sinusoidal variation of the dielectric 
function is added so that ™ — 2k2 ~ 0(A), where / is an integer. 

To simplify the equations we scale the length:  Zi —»• 2Z\ and the field amplitudes 
are scaled to the nonlinear coefficient, so that an = NAfie~iirSlZl/d, abi = NAbie

ivSlZ^d, 



aJ2 = NAS2e™s^ld, and ab2 = NAh2e-™s^ld. Here 6X = $8 and S2 = JAk - 28x. The 
scaled form of the equations of motion for the fundamental fields are 

dan        d   daji ax 
"ö 1 ■KT~   =   —7Tan - widfi + inabi + iaf2dn; 
OZ\       nVgi oti L 

ddbi        d   dabl ai . . 
H or-   =   —;rati -loiübi + iKdfi + iab2abl. (15) 

ö^i      nvgi dt\ 2 

The scaled equations for the second harmonic become: 

da/2  ,     d   da/2 a2       ...        .  . 2 

Saw   ,     d   Öa(,2 OL2 .r . 2 

^+^^7 = "y%+^2+!fl»' (16) 

The above equations were derived for pulses in strongly chromatic dispersive media. 
For the CW envelope, it does not matter whether the medium is chromatic or achromatic, 
because the spatial-dependent equations remain the same. However, for pulses in weakly 
dispersive or achromatic materials, the evolution equations are quite different and the 
above equations do not apply. The above equations were derived under the assumption 
that grating dispersion is used to compensate chromatic dispersion. 

2.2    Band-edge Phase Matching 

The weak grating differs from the homogeneous medium through the addition of two pa- 
rameters (#i,/c), as shown in Eqs. (15,16). Harmonic enhancement is obtained by careful 
choices of these parameters, and based on the dispersion properties of the material. Note 
that in this model chromatic dispersion dominates grating dispersion and the results ob- 
tained here are different from the usual Kronig-Penney models[1], that neglect chromatic 
dispersion. 

It must be mentioned, that the parameters (£1,62) can be related to the frequency 
detuning w — u>0 = AA. Here uQ = rf T° >, which is the scaled frequency for the center of 

the first stop band. From the previous definitions of (Si, hi) we find 

-h(uj) = 1 - \8i = --n(w) (17) 
TT 1T c 

Expanding in a Taylor series about UQ we obtain 

(18) -Ai(wü) = 1+AA 
7T 

J_     n'(u0) 
UJO      n(w0) 

The prime denotes a derivative with respect to angular frequency. Therefore, the scaled 
deviation parameter 81 becomes: 



*! = -A 
1      n'(wo) 

(19) 
w0      n(u>o) 

For a material with no chromatic dispersion, i.e. n(w) = constant, only the first term is 
relevant in Eq. (19) and 

-hM = 1 + —. (20) 

This is expected in the Kronig-Penney-type models. 
From Eq. (19), 8\ is proportional to the frequency detuning A multiplied by a function 

of wo- The parameter 82 is the difference between the phase mismatch Ak and 28i and is 
given as 

62 = -Ak - 2SL (21) 
■K 

The band-edge phase matching is obtained by choosing 82 = 0. We choose 61 to offset the 
phase mismatch Ak due to chromatic dispersion. This implies the alternate condition: 

n(2w) - n(u) = ^-. (22) 
ma 

At wo this is approximately: 

n(2w0) - n(wö) + AA[2n'(2u;o) - n'(u,o)] =   „  ^\A)- (23) 

If the dispersion is such that 2n'(2u>0) — n'(u>0) ~ 0(A), then it may be neglected. We 
define fi = w0+AA. Under these approximations the band-edge phase matching condition 
becomes 

n(2u;0)-n(u;o) = ^p (24) 

There are two cases when the band edge phase matching condition cannot be obtained. 
These occur when Afc = 0 or 61 = 0, independently. The first case denotes the material 
is chromatically non-dispersive; from Eqs. (19,21), we see that 82 = —28i — 2A/u>0- 
Here we have a Kronig-Penney-type model with only a Bragg grating and there is no 
chromatic dispersion to offset. The second case shows that 82 = dAk/ir. Here the material 
is chromatic, but the detuning from the band gap center frequency is zero because of 
Eq. (19). Here the transmission is attenuated and the second-harmonic generation is not 
efficient. 

To get the most out of band-edge phase matching, we have to utilize the two indepen- 
dent grating parameters (81, K). The best value for 61 may be inferred without solving 
Eqs. (15,16), but adjusting « requires the examination of solutions. By imposing the 
condition 82 = 0, the chromatic dispersion can be compensated by the dispersion of the 
Bragg grating, i.e. adjusting 81. At the band edge the phases introduced by forward- 
and backward-wave coupling change the phases of the waves in the material and this 



condition no longer assures the best conversion efficiency, as will be illustrated below, K 

can be adjusted by changing the modulation depth Ae, so that the best phase matching 
is concurrently coincident with a transmission resonance of the grating. The transmis- 
sion resonances, discussed below, are further evidence of strong forward-backward wave 
coupling and this leads to a an enhancement of the second-harmonic field. 

2.3    Steady-state, Non-depleted Solution 

The equations can be solved for the non-depleted pump and steady-state fields. This 
case illustrates the essential desirable features of the grating that enhance the nonlinear 
response of the material. Absorption is also neglected. 

The steady-state equations for the fundamental field amplitude are 

ddf 

ddbi 

dzi 

=   —iSidfi + {nan (25) 

=   iöidbi — iKdji (26) 

Defining Ai = J&\ — K
2
, which is the effective wavenumber for the envelope on the 

zi-scale, one can can obtain the corresponding grating group velocity (for the infinite 
medium) 

VQ = A!/*. (27) 

This is not the same as the group velocities appearing on the left hand side of Eqs. (15) 
and (16), but a correction to the group velocity in second-order perturbation theory. The 
solutions to the above equations are 

an(z)   =   fcos(A1z1)-^-sin(AiZi)ja/1(0) + ^sin(Ai2:1)aM(0) (28) 

abl(z)   =    fcoa(Ai2i) + ^-8in(AiZi)ja6i(0)-^-sin(Ai«i)o/i(0) (29) 

We consider a medium with N periods; in scaled units the sample length is L = irN. 
The input field a/i(0) is normalized to 1, and applying the boundary condition that the 
backward field vanished at L, gives the reflected field amplitude 

„   ,m »Ksin(AiI,) 
blW ~ A2 cos(A1I) + i8l sin(Aal) {M) 

The transmittance through the structure is simply T = \dfi(L)\2. 
The results are illustrated by considering the following index variation Ae = 5 x 10~4, 

with ei = 1 and ti = 1 + 2Ae. The average dielectric constant is 1.0005. Figure 1 is plots 
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Figure 1: Transmission versus frequency for a 104 period grating (or in scaled units 
L = 7rl04 ) with a dielectric variation of Ae = 5 x 10"4. The mode-coupled results and 
the transfer matrix calculations are indistinguishable. 

of the transmission |a/i(L)|2/|a/1(0)|2 versus frequency for L = TTIO
4
. The analytically 

calculated curve is indistinguishable from those generated by a transfer matrix routine 
with a step index profile whose first Fourier coefficient is identical to Ae. We note that 
the center of the gap is displaced from unity because the average refractive index is not 
unity. 

The transmission oscillations at the band edges are called transmission resonances. 
They have a close correspondence with Fabry-Perot-like resonances of the envelope func- 
tions in the structure. The field amplitude corresponding to the first transmission reso- 
nance at the lower edge of the stop band is plotted in Figure 2. As would be found for 
the lowest transmission resonance in a Fabry-Perot etalon, the field amplitude has one 
maximum. The difference here is that the Fabry-Perot resonance is half a wavelength, 
while for the Bragg grating, field amplitude is slowly varying over the scale of the wave- 
length. The input field is normalized to unity. The forward- and backward- propagating 
amplitudes have a single extremum and their maxima exceeds the input field value. The 
maximum value increases as the number of periods, JV, increases. The maximum field 
amplitude is proportional to Ae and increases with this parameter, as well. For large 
dielectric contrast between the layers only a few layers suffice to enhance the field beyond 
its input value[6]. This can be used to design compact frequency conversion structures. 

The second-harmonic fields are simply solved by applying the Laplace transform tech- 
nique to Eq. (16); in general, the solutions are complicated and we do not present them 
here. In the following sections we will analyze the solutions in detail. 



Figure 2: The forward- and backward- propagating field intensities, when the detuning is 
set at the first transmission maximum on the lower band edge, as a function of position 
(z in units of 7rl03). For parameter details see Figure 1. 

3    Results 

The second-harmonic fields at the transmission maximum are enhanced by the trans- 
mission resonance of the fundamental field. In homogeneous media the fields are phase 
matched, i.e. Ak = 0, to assure that the best conversion efficiency is achieved. How- 
ever, as mentioned above, the optimal condition for conversion is not identical to the 
phase matching condition without the backward-propagating fields, which are coupled by 
the grating period and lead to the parameter 2Si compensating for Ak. The interplay 
of forward- and backward-fields gives additional position-dependent phase shifts to the 
complex amplitudes. 

Figures 3 and 4 display the behavior of the second-harmonic fields in the medium as 
a function of frequency, but assuming 62 = 0 at each frequency, i.e. fi is the frequency 
of the fundamental field. The forward, second-harmonic field is zero at the input, but 
increases at the output, a maximum increase occurs when the phase matching frequency 
corresponds to the maximum of the transmission curve, which is also drawn on the side 
panel. 

The output second-harmonic intensity has been scaled to the second-harmonic gen- 
erated from a perfectly phase matched homogeneous medium of the same length and 
nonlinear response. The enhancement of the forward- propagating output at the maxi- 
mum is about 16 times that of the homogeneous case. The second harmonic is roughly 
proportional to the square of the intensity, so the large second-harmonic can be mainly 
attributed to the enhanced first harmonic field at the transmission resonance, which is 
nearly a factor of 4. For a 2.5 x 104 period grating, the enhancement is about 400 times 
above the homogeneous medium, when the fields are phase matched.   Note we remain 
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Figure 3: Forward-propagating second-harmonic intensity in the medium versus position 
and phase matching frequency for a 104 period structure. The vertical axis has been 
scaled by 8. The side panel shows the transmission spectrum for the fundamental wave. 

within the non-depleted pump approximation and the second harmonic is still weak com- 
pared to the fundamental. 

The second-harmonic backward-wave is also enhanced by about a factor of 4 above the 
homogeneous medium. Again by reference to Figure 1 this is consistent with the enhanced 
fundamental-harmonic backward-field inside the medium. The forward- and backward- 
fields form a standing-wave pattern in the sample at the transmission resonance and 
although the fundamental field is absent in the reflection at the transmission peak, the 
backward second-harmonic has a maximum there. The backward-propagating second- 
harmonic intensity is a probe of the backward fundamental field in the medium, just as 
the forward- propagating second harmonic probes its fundamental field. 

Finally, the sharpness of the response with phase matching is gauged from Figure 5 
for the forward-propagating second harmonic field. The field has been scaled by a fac- 
tor of 16 and the side panels display the transmission curves for the fundamental. The 
maximum for a given value of S\ occurs at the first transmission maximum; the output 
is sharply peaked at that frequency with a spectral width about as wide as the trans- 
mission resonance. This occurs for both the forward and the backward (not shown here) 
fields. The forward-propagating, second-harmonic field is the strongest, since it has the 
largest field at the transmission resonance, as previously discussed. Since the fields are 
not phase matched at the upper transmission maximum, there is no perceptible output 
on this scale of intensities. Also, drawing attention to the side panel on the ft axis, we 
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Figure 4: backward-propagating second-harmonic intensity in the medium versus position 
and phase matching frequency for a 104 period structure. The vertical axis has been scaled 
by 8. The side panel shows the transmission spectrum for the fundamental wave. 

note the maximum conversion does not occur when S2 = 0 at the first transmission maxi- 
mum; instead, the best conversion efficiency occurs for 82 = 0 at the second transmission 
maximum. This is a consequence of the additional phase changes due to presence of both 
forward- and backward-fields in the medium. The weak secondary maxima observed is 
due to the resonance at the second transmission maximum. Including medium dispersion 
in the analysis is an important aspect of designing efficient conversion devices. 

4      Concluding Remarks 
The fields are affected by several factors at the band edge. First, there is a Fabry-Perot 
type resonance in the field amplitudes, which leads to higher conversion efficiencies inside 
the structure. The field amplitude is large over a major portion of the volume. Second, 
the transmission is large, so that all the fundamental field will enter the structure, i.e 
there is no impedance mismatch. Third, the group velocity at the band edge is small and 
the fundamental field spends more time inside the structure leading to greater conversion 
efficiency. Our results are quite distinct from quasi-phase matching, which involves a 
different length scale; the medium periodicity is chosen on the order of a coherence length 
and modulating the nonlinear coefficient is important. The contrast with band-edge phase 
matching is apparent; since the grating periodicity is on the order of a wavelength, the 
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Figure 5: The plot of the forward-propagating second-harmonic intensity in the medium 
versus phase matching and detuning for a 2.5 x 104 period structure. The vertical axis has 
been scaled by 16. The side panels show the transmission spectrum for the fundamental 
wave. 

linear properties of the medium are utilized to reduce the phase mismatch, as described 
by the parameter 82. 

There are design parameters, whose determination is important for applications of this 
analysis. The phase matching condition is not easily defined here due to the interaction of 
the forward- and backward-waves; nevertheless, there are optimal values of £1 that provide 
enhanced conversion. The matching frequency and the transmission maxima should be 
tuned for the best results. This means that for a given amplitude, Ae, there is an optimum 
number of layers that will achieve this condition. The number of layers should be large 
enough to result in an increased conversion efficiency; on the other hand, the maximum 
number of layers is set by technological limits, but the larger the number of periods, the 
sharper the transmission resonances in frequency space (compare Figures 1 and 2). This 
sets a lower limit on the pulse duration, since if the pulse is too short, then its spectrum 
extends over several transmission maxima, which leads to pulse dispersion, reflection, and 
reshaping in the structure. 

Second-harmonic fields have been generated in glass hosts, despite the fact that it 
is on the average centro-symmetric. This centro-symmetry can be broken by adding a 
static external field or by defects seeded in the medium during the three-wave mixing 
process. Fiber Bragg gratings written into prepared fibers could be used to demonstrate 
the resonance enhancement concept.   The conversion is already good for the prepared 
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fiber and it could be further increased by writing a Bragg grating into the fiber. The 
index change in the core could be of order 0.01 [18] and the overlap of a mode with the 
core is typically around 75 %, so that the efficiency of the coupling is not significantly 
reduced [19]. 

The results presented here apply to a number of nonlinear conversion phenomena. 
The sum- and difference- frequency generation problems are amenable to the analysis 
given here. The coupled-mode equations are similar, but now depend linearly on the 
fundamental field. Third-order processes can also be treated by the same approach; the 
third-harmonic generation process depends on the cube of the fundamental field and 
greater efficiency can be achieved by the band edge resonance; there is an additional gap 
near the third-harmonic frequency, that provides a further resonance condition. For wave- 
lengths below about 400 nm though, absorption will have to be included in the analysis. 
Other nonlinear processes can also be optimally designed at the band edge, for instance, 
the stimulated Raman scattering could be suppressed by tuning the fundamental field 
to the upper, band-edge resonance or the amplification of fields and quantum coherence 
between the Stokes and anti-Stokes fields[20] could be managed by band-edge changes in 
the electromagnetic density of states. 

There are a number of applications of the concepts useed here. The enhanced second- 
harmonic (or third-harmonic) signal can be incorporated in a number of time-resolved 
spectroscopy applications, such as, frequency resolved optical gating (so-called FROG) 
or recent Zeptojoule measurements to improve the signal-to-noise ratio. It can also be 
used in a waveguide environment to assist in signal demultiplexing by converting colliding 
pulses to second-harmonic radiation. 
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